Zhe-Xi Luo

Research Summary
Research in Luo Lab in the University of Chicago is devoted to the understanding of the origins and earliest evolution of mammals. Our endeavor is to study how mammals arose in their early history, as documented in a rich and rapidly growing fossil record. We seek to understand the origins of key mammalian adaptations, evolutionary changes in their development patterns, phylogenetic relationship of the major lineages of Mesozoic mammals, as well as their ecological and morphological diversification. The understanding of early mammalian evolution can provide a useful case study on the diversification of major organismal groups, on the patterns and processes of macroevolution, on the geological history of vertebrate faunas, and on their paleobiogeography.
Evolutionary Biology, Paleontology, Mammalian Evolution, Vertebrate Evolutionary Development
  • Harvard University, Museum of Comparative Zoology, Cambridge, MA, US, Postdoctoral fellowship Mammalian Evolutionary Morphology 07/1991
  • University of California at Berkeley, Museum of Paleontology, Berkeley, CA, US, PhD Paleontology 06/1989
  • Nanjing University, Department of Geology, Nanjing, China, BS Geology, Stratigraphy and Paleontology 01/1982
Biosciences Graduate Program Association
  1. Author Correction: Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature. 2023 Jan 09. View in: PubMed

  2. The earliest segmental sternum in a Permian synapsid and its implications for the evolution of mammalian locomotion and ventilation. Sci Rep. 2022 08 05; 12(1):13472. View in: PubMed

  3. Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature. 2022 07; 607(7920):726-731. View in: PubMed

  4. Evolution of inner ear neuroanatomy of bats and implications for echolocation. Nature. 2022 02; 602(7897):449-454. View in: PubMed

  5. Morphological disparity and evolutionary transformations in the primate hyoid apparatus. J Hum Evol. 2022 01; 162:103094. View in: PubMed

  6. Incomplete convergence of gliding mammal skeletons. Evolution. 2020 12; 74(12):2662-2680. View in: PubMed

  7. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science. 2019 Jul 19; 365(6450):276-279. View in: PubMed

  8. The role of miniaturization in the evolution of the mammalian jaw and middle ear. Nature. 2018 09; 561(7724):533-537. View in: PubMed

  9. Publisher Correction: Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature. 2018 10; 562(7728):E27. View in: PubMed

  10. Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature. 2018 06; 558(7708):108-112. View in: PubMed

  11. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature. 2017 08 17; 548(7667):326-329. View in: PubMed

  12. New gliding mammaliaforms from the Jurassic. Nature. 2017 08 17; 548(7667):291-296. View in: PubMed

  13. Meckel's cartilage breakdown offers clues to mammalian middle ear evolution. Nat Ecol Evol. 2017 03 06; 1(4):93. View in: PubMed

  14. A new developmental mechanism for the separation of the mammalian middle ear ossicles from the jaw. Proc Biol Sci. 2017 02 08; 284(1848). View in: PubMed

  15. Inner ear labyrinth anatomy of monotremes and implications for mammalian inner ear evolution. J Morphol. 2017 02; 278(2):236-263. View in: PubMed

  16. Morphological evolution of the mammalian jaw adductor complex. Biol Rev Camb Philos Soc. 2017 Nov; 92(4):1910-1940. View in: PubMed

  17. Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease. J Neurosci Methods. 2016 09 15; 271:14-24. View in: PubMed

  18. X-ray computed tomography datasets for forensic analysis of vertebrate fossils. Sci Data. 2016 Jun 07; 3:160040. View in: PubMed

  19. Ascent of the Mammals. Sci Am. 2016 Jun; 314(6):28-35. View in: PubMed

  20. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc Natl Acad Sci U S A. 2015 Dec 22; 112(51):E7101-9. View in: PubMed

  21. A Cretaceous eutriconodont and integument evolution in early mammals. Nature. 2015 Oct 15; 526(7573):380-4. View in: PubMed

  22. Mammalian evolution. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science. 2015 Feb 13; 347(6223):764-8. View in: PubMed

  23. Mammalian evolution. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science. 2015 Feb 13; 347(6223):760-4. View in: PubMed

  24. Evolution: Tooth structure re-engineered. Nature. 2014 Aug 07; 512(7512):36-7. View in: PubMed

  25. Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil. Science. 2013 Aug 16; 341(6147):779-83. View in: PubMed

  26. Response to comment on "The placental mammal ancestor and the post-K-Pg radiation of placentals". Science. 2013 Aug 09; 341(6146):613. View in: PubMed

  27. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature. 2013 Aug 08; 500(7461):163-7. View in: PubMed

  28. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science. 2013 Feb 08; 339(6120):662-7. View in: PubMed

  29. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature. 2011 Aug 24; 476(7361):442-5. View in: PubMed

  30. Fossil evidence on origin of the mammalian brain. Science. 2011 May 20; 332(6032):955-7. View in: PubMed

  31. Fossil evidence on evolution of inner ear cochlea in Jurassic mammals. Proc Biol Sci. 2011 Jan 07; 278(1702):28-34. View in: PubMed

  32. Journal club. A palaeontologist ponders how genes and fossils can illuminate mammalian evolution. Nature. 2010 Jun 10; 465(7299):669. View in: PubMed

  33. Evolutionary development of the middle ear in Mesozoic therian mammals. Science. 2009 Oct 09; 326(5950):278-81. View in: PubMed

  34. Recent advances in Chinese palaeontology. Proc Biol Sci. 2010 Jan 22; 277(1679):161-4. View in: PubMed

  35. A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse-angled molars and 'amphilestid' eutriconodonts. Proc Biol Sci. 2010 Jan 22; 277(1679):237-46. View in: PubMed

  36. Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals. J Anat. 2009 May; 214(5):679-93. View in: PubMed

  37. Transformation and diversification in early mammal evolution. Nature. 2007 Dec 13; 450(7172):1011-9. View in: PubMed

  38. Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature. 2007 Nov 01; 450(7166):93-7. View in: PubMed

  39. A new eutriconodont mammal and evolutionary development in early mammals. Nature. 2007 Mar 15; 446(7133):288-93. View in: PubMed

  40. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science. 2006 Feb 24; 311(5764):1123-7. View in: PubMed

  41. A Cretaceous symmetrodont therian with some monotreme-like postcranial features. Nature. 2006 Jan 12; 439(7073):195-200. View in: PubMed

  42. A Late Jurassic digging mammal and early mammalian diversification. Science. 2005 Apr 01; 308(5718):103-7. View in: PubMed

  43. PALEONTOLOGY: Homoplasy in the Mammalian Ear. Science. 2005 Feb 11; 307(5711):861-862. View in: PubMed

  44. An Early Cretaceous tribosphenic mammal and metatherian evolution. Science. 2003 Dec 12; 302(5652):1934-40. View in: PubMed

  45. The earliest known eutherian mammal. Nature. 2002 Apr 25; 416(6883):816-22. View in: PubMed

  46. A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science. 2001 May 25; 292(5521):1535-40. View in: PubMed

  47. Dual origin of tribosphenic mammals. Nature. 2001 Jan 04; 409(6816):53-7. View in: PubMed

  48. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature. 1999 Mar 25; 398(6725):326-30. View in: PubMed

  49. A new symmetrodont mammal from China and its implications for mammalian evolution. Nature. 1997 Nov 13; 390(6656):137-42. View in: PubMed

  50. The functional diversity of marsupial limbs is influenced by both ecology and developmental constraint. Biological Journal of the Linnean Society. 2021; 135(5):569-585.::::

  51. The Senses – A Comprehensive Reference (Volume 2) (Fritzsch B, Grothe B editors). Origins and Evolution of Mammalian Ears and Hearing Function. 2020; 2:207-252.::::

  52. Reexamination of the mandibular and dental morphology of the Early Jurassic mammaliaform Hadrocodium wui. Acta Palaeontologica Polonica. 2022; 67(1):95-113.::::

  53. The mandible and dentition of Borealestes serendipitus (Docodonta) from the Middle Jurassic of Skye, Scotland. Journal of Vertebrate Paleontology. Journal of Vertebrate Paleontology. 2019; 39:e1621884-17.::::

  54. The mandible and dentition of Borealestes serendipitus (Docodonta) from the Middle Jurassic of Skye, Scotland. Journal of Vertebrate Paleontology. 2019; 39:e1621884 - 17.::::

  55. Incomplete convergence of gliding-mammal skeletons. Evolution. 2020; 74:2662-2680.::::

  56. Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis. Journal of Mammalian Evolution. 2017.::::

  57. Morphological evolution of the mammalian jaw adductor complex. Biological Reviews. 2017; 92(4):1910-1940.::::

  58. Transformations of the quadrate (incus) through the transition from non-mammalian cynodonts to mammals. Journal of Vertebrate Paleontology. 1994; 14:341-374.::::

  59. The postcranial skeleton of Yanoconodon allini from the Early Cretaceous of Hebei, China and its implications for locomotor adaptation in eutriconodontan mammals. Journal of Vertebrate Paleontology. 2017; (e1315425):23.::::

  60. Evolutionary origins of the mammalian promontorium and cochlea. Journal of Vertebrate Paleontology. 1995; 15:113-121.::::